The Risk of Stranded Electricity Assets

The Risk of Stranded Electricity Assets

Tackling the Risk of Stranded Electricity Assets with Machine Learning and Artificial Intelligence

The Paris Agreement on climate change requires nations to keep the global temperature within the 2°C carbon budget. Achieving this temperature target means stranding more than 80% of all proven fossil energy reserves as well as resulting in investments in such resources becoming stranded assets. At the implementation level, governments are experiencing technical, economic, and legal challenges in transitioning their economies to meet the 2°C temperature commitment through the nationally determined contributions (NDCs), let alone striving for the 1.5°C carbon budget, which translates into greenhouse gas emissions (GHG) gap.

This chapter focuses on tackling the risks of stranded electricity assets using machine learning and artificial intelligence technologies. Stranded assets are not new in the energy sector; the physical impacts of climate change and the transition to a low-carbon economy have generally rendered redundant or obsolete electricity generation and storage assets.

Low-carbon electricity systems, which come in variable and controllable forms, are essential to mitigating climate change. These systems present distinct opportunities for machine learning and artificial intelligence-powered techniques. This chapter considers the background to these issues. It discusses the asset stranding discourse and its implications to the energy sector and related infrastructure. The chapter concludes by outlining an interdisciplinary research agenda for mitigating the risks of stranded assets in electricity investments. Read More>>

Leave a Reply

Your email address will not be published. Required fields are marked *

Sign up and subscribe to our newsletter

We respect your privacy and do not tolerate spam